Iterasi Momentum Fragmentasi Batubara Mencapai Bentuk Serbuk
Isi Artikel Utama
Abstrak
Ukuran batubara semakin kecil mampu meningkatkan efisiensi kerja boiler pembangit listrik, namun untuk mendapatkan ukuran tersebut diperlukan metode yang mampu memprediksi ukuran dihasilkan. Eksperimental metode iterasi momentum disajikan, dimana dibangun melalui eksperimental fragmentasi sampel batubara berukuran 1mm3 dan 10mm3 menjadi serbuk dengan dinding landasan pejal berntuk parabolic. Kemudian proses analisis dengan pengiraan secara matematik dilakukan, dan membuktikan bahwa iterasi momentum per millimeter skala dapat menentukan ukuran akhir batubara yang dihasilkan. Bermula dari 1 fragment batubara berukuran 1mm3 dan 10mm3 menjadi 5.314.410 fragments dengan ukuran masing-masing fragments dalam unit millimeter adalah 0.000001852, dan massa setiap fragments dalam kg adalah 0.0000000001. Ini membuktikan bahwa fragments size hingga bentuk serbuk dengan metode iterasi momentum dapat diaplikasikan pada batubara sebagai bahan bakar boiler pembangkit listrik, dan pengolahan sampah tanpa proses pemisahan menjadi partikel skala nanometer untuk meningkatkan nilai fungsi serta nilai guna dari sampah secara tenoekonomi di Provinsi Riau.
Keywords: Iterasi momentum, fragmentation, coal powder form.
Rincian Artikel
Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Referensi
Afshar, T., Disfani, M. M., Arulrajah, A., Narsilio, G. A., & Emam, S. (2017). Momentum of Particle Shape on Breakage of Recycled Construction and Demolition Aggregates. Powder Technology, 308, 1-12.
Asia-Pasific Economic Cooperation (APEC). (2016). Energi Demand and Supply Outlook – 6th Edition: Volume II Economy reviews. Tokyo: Asia-Pasific Energy Research Centre (APERC).
Aziznejad, S., Esmaieli, K., Hadjigeorgiou, J., & Labrie, D. (2018). Responses of Jointed Rock Masses Subjected to Momentum Loading. Journal of Rock Mechanics and Geotechnical Engineering, 10, 624-634.
Bae, D. M., Prabowo, A. R., Cao, B., Sohn, J. M., Zakki, A. F., & Wang, Q. (2016). Numerical Simulation for the Collision Between Side Structure and Level Ice in Event of Side Impact Scenario. Latin American Journal of Solids and Structures, 13(16), 2691-2704.
Bazant, Z. P., & Caner, F. C. (2014). Momentum Comminution of Solids due to Local Kinetic Energy of High Shear Strain Rate: I. Continuum Theory and Turbulence Analogy. Journal of the Mechanics and Physics of Solids, 64, 223-235.
Bažant, Z. P., & Su, Y. (2015). Impact Comminution of Solids Due to Progressive Crack Growth Driven by Kinetic Energy of High-Rate Shear. Journal of Applied Mechanics, 82(3), 1-5.
Bosia, F., Pugno, N., Lacidogna, G., & Carpinteri, A. (2008). Mesoscopic Modeling of Acoustic Emission Through an Energetic Approach. International Journal of Solids and Structures, 45(22-23), 5856-5866.
Brown, A. J. (2002). Collision Scenarios and Probabilistic Collision Damage. Marine Structures, 15(4-5), 335-364.
Carpinteri, A., & Pugno, N. (2005). Scaling Laws on Strength of Solids Related to Mechanics or to Geometry. Italy: Nature Publishing Group.
Carpinteri, A., Lacidogna, G., Corrado, M., & Di Battista, E. (2016). Cracking and Crackling in Concrete-Like Materials: A Dynamic Energy Balance. Engineering Fracture Mechanics, 155, 130-144.
Cereceda, D., Graham-Brady, L., & Daphalapurkar, N. (2017). Modeling Dynamic Fragmentation of Heterogeneous Brittle Materials. International Journal of Mechanical Sciences, 99, 85-101.
Chen, X., & Chan, A. H. C. (2018). Modeling Momentum Fracture and Fragmentation of Laminated Glass Using The Combined Finite-Discrete Element Method. International Journal of Mechanical Sciences, 112, 15-29.
Chen, X., & Chan, A. H. C. (2018). Modelling Momentum Fracture and Fragmentation of Laminated Glass Using The Combined Finite-Discrete Element Method. International Journal of Momentum Engineering, 112, 15-29.
Chen, X., & Chan, A. H. C. (2018). Modelling Momentum Fracture and Fragmentation of Laminated Glass Using The Combined Finite-Discrete Element Method. International Journal of Momentum Engineering, 112, 15-29.
Davydova, M., Uvarov, S., & Chudinov, V. (2014). Scaling Law of Quasi Brittle Fragmentation. Procedia Materials Science, 3, 580-585.
Gilvarry, J. J. (1961). Fracture of brittle solids. I. Distribution Function for Fragment Size in Single Fracture (Theoretical). Journal of Applied Physics, 32(3), 391-399.
Guin, L., Raphanel, J. L., & Kysar, J. W. (2016). Atomistically Derived Cohesive Zone Model of Intergranular Fracture in Polycrystalline Graphene. Journal of Applied Physics, 119(245107).
Haeri, H., Sarfarazi, V., Marji, M. F., Hedayat, A., & Zhu, Z. (2016). Experimental and numerical study of shear fracture in brittle materials with interference of initial double cracks. Acta Mechanica Solida Sinica, 29(5), 555-566.
Hassani-Gangaraj, M., Veysset, D., Nelson, K. A., & Schuh, C. A. (2018). In-Situ Observations of Single Micro-Particle Impact Bonding. Scripta Materialia, 145, 9-13.
Horiba. (2010). A Guidebook to Particle Size Analysis. Horiba, 1-17.
Hou, T. X., Xu, Q., & Zhou, J. W. (2015). Size Distribution, Morphology and Fractal Characteristics of Brittle Rock Fragmentations by the Impact Loading Effect. Acta Mechanica, 226, 3623-3637.
Hou, T. X., Xu, Q., & Zhou, J. W. (2015). Size Distribution, Morphology and Fractal Characteristics of Brittle Rock Fragmentations by The Momentum Loading Effect. Acta Mechanica, 226, 3623-3637.
Huang, D., Lu, G., & Qiao, P. (2018). An Improved Peridynamic Approach for Quasi-Static Elastic Deformation and Brittle Fracture Analysis. International Journal of Mechanical Sciences, 94-95, 111-122.
Huang, M. (2002). Vehicle crash mechanics. CRC press.
Huo, J., Wang, W., Sun, W., Ling, J., & Dong, J. (2017). The Multi-Stage Rock Fragmentation Load Prediction Model of Tunnel Boring Machine Cutter Group Based on Dense Core Theory. International Journal of Advanced Manufacturing Technology, 90, 277-289.
Jiang, S., Shen, L., Guillard, F., & Einav, I. (2018). The Effect of Inter-Grain Contact Material on The Dynamic Fracture of Short Glass Bead Chains Under Momentum. Powder Technology, 339, 911-921.
Klichowicz, M., Fruhwirt, T., & Lieberwirth, H. (2018). New Experimental Setup for The Validation of DEM Simulation of Brittle Crack Propagation at Grain Size Level. Minerals Engineering, 128, 312-323.
Kudryavtsev, O. A., & Sapozhnikov, S. B. (2016). Numerical Simulations of Ceramic Target Subjected to Ballistic Momentum Using Combined DEM/FEM Approach. International Journal of Mechanical Sciences, 114, 60-70.
Lai, X., Liu, L., Li, S., Zeleke, M., Liu, Q., & Wang, Z. (2018). A Non-Ordinary State-Based Peridynamics Modeling of Fractures in Quasi-Brittle Materials. International Journal of Mechanical Sciences, 111, 130-146.
Li, X. F., Li, H. B., & Zhao, J. (2017). 3D Polycrystalline Discrete Element Method (3PDEM) for Simulation of Crack Initiation and Propagation in Granular Rock. Computers and Geotechnics, 90, 96-112.
Li, X. F., Li, H. B., Zhang, Q. B., Jiang, J. L., & Zhao, J. (2018). Dynamic Fragmentation of Rock Material: Characteristic Size, Fragment Distribution and Pulverization Law. Engineering Fracture Mechanics, 199, 739-759.
Liu, J., Long, Y., Ji, C., Zhong, M., & Liu, Q. (2017). The Influence of Liner Material on The Dynamic Response of the Finite Steel Target Subjected to High Velocity Impact by Explosively Formed Projectile. International Journal of Impact Engineering, 109, 264-275.
Ma, G., Zhang, Y., Zhou, W., Ng, T. T., Wang, Q., & Chen, X. (2018). The effect of different fracture mechanisms on impact fragmentation of brittle heterogeneous solid. International Journal of Impact Engineering, 113, 132-143.
Ma, G., Zhou, W., Zhang, Y., Wang, Q., & Chang, X. (2018). Fractal behavior and shape characteristics of fragments produced by the impact of quasi-brittle spheres. Powder Technology, 325, 498-509.
Motamedi, D., & Mohammadi, S. (2010). Dynamic Analysis of Fixed Cracks in Composites by the Extended Finite Element Method. Engineering Fracture Mechanics, 77, 3373-3393.
Paluszny, A., et al. (2016). A Direct Fragmentation Method with Weibull Function Distribution of Sizes Based on Finite-and Discrete Element Simulations. International Journal of Solids and Structures, 38(51).
Pereira, L. F., Weerheijm, J., & Sluys, L. J. (2018). Simulation of Compaction and Crushing of Concrete in Ballistic Momentum with A New Damage Model. International Journal of Mechanical Sciences, 111, 208-221.
Pillai, U., Heider, Y., & Markert, B. (2018). A diffusive dynamic brittle fracture model for heterogeneous solids and porous materials with implementation using a user-element subroutine. Computational Materials Science, 153, 36-47.
Rhodes, M. (2008). Introduction to Particle Technology: 2nd Edition. New Jersey: John Wiley & Sons, Ltd.
Roth, S. N., Léger, P., & Soulaïmani, A. (2015). A Combined XFEM-Damage Mechanics Approach for Concrete Crack Propagation. Computational Methods in Applied Mechanics and Engineering, 283, 923-955.
Saeidi, F., Tavares, L. M., Yahyaei, M., & Powell, M. (2016). A Phenomenological Model of Single Particle Breakage as a Multi-Stage Process. Minerals Engineering, 98, 90-100.
Saeidi, F., Yahyaei, M., Powell, M., & Tavares, L. M. (2017). Investigating the Effect of Applied Strain Rate in a Single Breakage Event. Minerals Engineering, 100, 211-222.
Serway, R. A., & Jewett, J. W. (2008). Physics for Scientists and Engineers with Modern Physics (7th Ed.). Brooks/Cole, Engage Learning.
Shi, F. (2016). A review of the applications of the JK size-dependent breakage model Part 2: Assessment of material strength and energy requirement in size reduction. International Journal of Mineral Processing, 157, 36-45.
Shi, T., & Leung, C. K. (2017). Minimum energy based method to predict the multiple cracking pattern in quasi-brittle beam. International Journal of Solids and Structures, 117, 1-13.
Takashima, Y., Kawabata, T., Yamada, S., & Minami, F. (2017). Observation of Micro-Cracks Beneath Fracture Surface During Dynamic Crack Propagation. Theoretical and Applied Fracture Mechanics, 92, 178-184.
Tan, C. Z. (2018). Wave Equation for the Energy and the Momentum of a Moving Particle. Optik (Stuttg), 168, 864-872.
Tavares, L. M., & King, R. P. (1998). Single-Particle Fracture Under Impact Loading. International Journal of Mineral Processing, 54(1), 1-28.
Vangi, D., Begani, F., Gulino, M. S., & Spitzhüttl, F. (2018). A Vehicle Model for Crash Stage Simulation. IFAC-PapersOnLine, 51(2), 837-842.
Wang, S., Ding, Y., Wang, C., Zheng, Z., & Yu, J. (2017). Dynamic Material Parameters of Closed-Cell Foams Under High-Velocity Impact. International Journal of Impact Engineering, 99, 111-121.
Wang, Y., Bui, H. H., Nguyen, G. D., & Ranjith, P. G. (2019). A New SPH-Based Continuum Framework with An Embedded Fracture Process Zone for Modeling Rock Fracture. International Journal of Solids and Structures, 159, 40-57.
World Energy Council. (2016). World Energy Resources Batubara. London: World Energy Council.
Wunsche, M., Sladek, J., Sladek, V., Zhang, C., Garcia-Sanchez, F., & Saez, A. (2017). Dynamic Crack Analysis in Piezoelectric Solids Under Time-Harmonic Loadings with a Symmetric Galerkin Boundary Element Method. Engineering Analysis with Boundary Elements, 84, 141-153.
Xu, X., Wu, S., Jin, A., & Gao, Y. (2018). Review of The Relationships Between Crack Initiation Stress, Mode I Fracture Toughness and Tensile Strength of Geo-Materials. International Journal of Geomechanics, 18(10).
Yan, C., Ou, Z. C., Duan, Z. P., & Huang, F. L. (2015). An analytical approach to dynamic spalling of brittle materials. International Journal of Impact Engineering, 83, 28-36.
Zhang, G., Gazonas, G. A., & Bobaru, F. (2017). Supershear Damage Propagation and Sub-Rayleigh Crack Growth from Edge-On Momentum: A Peridynamic Analysis. International Journal of Mechanical Sciences, 113, 73-87.
Zhao, T., Crosta, G. B., Utili, S., & De Blasio, F. V. (2017). Investigation of Rock Fragmentation During Rockfalls and Rock Avalanches via 3-D Discrete Element Analyses. Journal of Geophysical Research: Earth Surface, 122, 678-695.
Zhou, X. P., Lian, Y. J., Wong, L. N. Y., & Berto, F. (2018). Understanding The Fracture Behavior of Brittle and Ductile Multi-Flawed Rocks by Uniaxial Loading Using Digital Image Correlation. Engineering Fracture Mechanics, 199, 438-460.
Zuo, J., Liu, H., & Li, H. (2015). A Theoretical Derivation of The Hoek–Brown Failure Criterion for Rock Materials. Journal of Rock Mechanics and Geotechnical Engineering, 7(4), 361-366.